
AD-AI05 109 MARYLANU UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE FIG 9/2
A FUNC T IONAL FRAMEWORK FOR DATABASE MANAGEMENT STSTEMS.(U)
FEB AG M L BROOIE OAAG2-7 8-6-0162

UNCLASSIFIED TR-870 NL

Technical Repprt TR-870L Febpvao W80/"I L-/DDAG_39-78-G- 1 • . . -

- A JUNCTIONAL JfRAMEWORK FOR
DATABASE DANAGEMENT SYSTEMS*

by
"61c haet Lt/rodie

Department of Computer Science
and

College of Business ano Management
University of MaryLand

CoLLege Park, MaryLard 217,2

ISPBESI 0' AMTY PRACTICAOLS-

TA0C I N=- 3

TW :JW Y r--N!S! .T' 10 C 3-NTAIN A
3(I;NIFIC.NT 2,. OF FAG'Z5 W 0C.1 Do NIO This document z's" .s7 cnPp.Oved

, , ' " IiLY .. for public re, ,je u' . o ; iL

Sdistribution is tr.inrItcd.
.-

7T1is wcrk was sLpported, in parts by the Army Oesearch Office

art DAAG 29-78-G-O16Z, for the U.S. Army Institute for Research

in lanacement Information ard Computer Science (AIRMICS).

81 2 127
aim "

II

ACKNOWLEDGMEh7

~The authors are gratefut to Eugene Lowerthat for Ciscussions on

i the orobtem and approach audressed in the paper. This paper was

writter, Partl as a Submission to the ANSI/X!JSPARC - Database

Systems Study Group.

DISCLAIMER

The firings in this reoort are not to be consicereo as an

official Department of the Army positicn unLess so designated by
cther wthorizing cocuments.

-~ -~-- r

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

*1

ABSTRACT

The corcept o 4 Dd"S architecture #,*.,lpayed an important rote in
the design, analysis, and comparison ct DPMSs as welt as in the
cevetocrment of other database corceots. The ANSI/SPARC
,rctctyvical database system architecture was a major
contritutio?" in this develocnent. The architecture raised many
issues, stimuLatec considerable researcht and posed a number ot
nes prot(emso Since the basic forwutation B&.4_ the AhSI
arclitecture, in 1974, LittLe consideration 4-1 be-e- given to
resetving problems and accommodating new' and future developments.
The main problems concern its unnecessary ridgidity.

,The co-tributions cf this paper are a 4istinction between DBSPO
framewcrk and D6FOS architecture, and a functional DBPS framework.
The frame.ork was devetopec using a fuhcticnat apprcach in uhicn
a DEl is characterized atstractly in terms of functionak
compcnents and their potential relationships. The acproach is
basec cn the noticns of modularity and oata abstraction as
oevelocec in software engineering and rrogrammin; languages.

a

-,

MUM

1. IN'QO0UCTION 1

1.1. Definitions of Framework anc Architecture 4

1.2. The Need to Separate Frameucrk and Architecture 5

1.3. ReLevart Research c

2. fe.-uireoents of a DBMS Framework

2.1. Contritutions of the ANSI/SFARC Architecture 8

?.2. ProbLews of the ANSI/SPARC Approach

2. The Functional Framework 13

'.1. The Furctionat Approach 13

7.2. Objects in a 080S 14

".2.1. ExternaL Objects 15

;.2.2. Conceptual Objects 15

-. 2.3. Internal Objects 15

7.2.4. Externat, Concectuatt anc Internal Levels 10

3.2.5. System Objects 17

'. 3. Basic DBMS Objects 17

'.4. Basic Functions 19

1.5. Languages 2L

'.6. Functicnal Component matria 2u

.. 7. ReLaticnships Setween Functional Components 21

4. Furctional Anatysis of OB*Ss 23

5. FurctionaL Analysis of the ANSI Arclitecture 2o

6. CorcLusion 3U

7. references Z

a -

S 1 iNIRODUCTION

when designing a rew database managexent system (DEMS), its
functions, catabase model, architecture, and Languages must be
cefirez. This inevitably deals with bcth logical and physical
aspects, the way cf fitting together CcOuLes of the system in an
overall system architectures In earlier approaches, DEMS
architecture appears to have been inextricably tied tc the
philosophy and database model of the system. Architecture has
been tre~teo as a pervasive feature cf a DEMS. The purpose of
this pDoer is to distinguish a DDMS framework (which may be
considered, inforwaly, to be an abstract characterization of a

DE'S -- its functicns, objects, and Laruage interfaces) from
D9 MS architecture (which is, again informally, the way that
moct.es are assemolec to achieve a system that imPlements the
features specified in the framework). An architecture
inoeperdent framework is developed here to provide a better
mechanism for comparing systems that gLrport to achieve the same
goats (but actually co not, tecause of their architecture).

Fossibly the most ciscussed DBMS architecture in the past five
years has been that proposed by the ANSI/SPARC ad hoc group on
oatacase managemerto This group, ccnverec in 172, was
originally chartered by the American National Stancards
Institute-X3-SPARC commitee to: Investigate the subject of
database managemert systems with the objective of determining
bhich, if anX, aspects of such systems are at prtljnt suitatle
candidates *or the development of American National Standards.

The major result of the group was the so-called "three schema
.rchitecture". This was epitomized oy the diagram (Figure 1)
copied from the interim and final reports LANSI 1 7 ; Tsichritzis
ano KLug 197'E. The work has been characterized as "a database
:ystem f rototypical architecture" ir which D9MS functions were
cescrit-eo in a somewhat ad hcC fashion, along with a aiscussion
Of an "aostract implementation". The group was never in total
agreement as to the language interfaces and architectures
presenteo in the report. The final report reflected more of a
consensus position %'ithout much of the anciLLiary argument. In
conseouence, the report has been argueo, uiscussed, ano
interpreted by many who have only these reports as tackgraouo
(i.e., 3 very small part of the work of the group).

[,ecauso the "AuSI/SPARC architecture" filled a gao or satisfied I
philcsophical neec of users and researchers, it has been
successful (as a concept , if not as a prototype for the future
imrtementors). However, the lack of clarity has led to some
substantial differences; moreover there are problems with the
architecture (to be discussed later). It seems that the protlems
stem partly from the fact that ar architecture invclves
implementation details. Thus, we reed a more abstract yet
rrecise characterization of a DBMS.

1 .

ln tcti% cases, data semantics (Logicat properties of objects)
shouLd oe considered independantty of the underLyjng
representation anc it shcutl be gcssible to aLter the
representation without altering the data semantics. This has
been rursueo in programming Languages under the name dl
itlirgiigI2 and in databases under the rame of data igtali.
in this papert we appLy these concepts to DBMSs.

1*1

(D 0
~ i~ !~ CL

,-kC

RWIV'111le \MRSW

o -- 0 IL

r~1~ ~'MR,
9 IL 4

77 '7-

1.1. Cefinitions cf Framework and Architecture

A OSv2 fra Vrk is defined as:

A paradigm or model of the functicrs of a DbPS. The
functions may be defined in terms of functional
components anc their possible relationships.

The oefinition is tased on the functional approach in whicm
computer systems are characterized atstractly in terms of their
functicns. The important concepts for the above definiticns are:

1. A 'unctional definition is acre abstract than an
architecture since it provides a specification of a class
c# possible architectures in whict the functions can be
implemented.

2. a DBmS is defined in terms of its functional components
which include the Languages used to express and initiate
the functicns (i.e., the syntax associated with the
component) ano both the functions themselves and the
cbjects they reference (i.e., the semantics of the
component). The objects are normally items in groups ot
cata that exist as input, o~tput or in a database. A
4unctionat ccmponent can be viewec as an abstract machine.

!. The components are modules that encaCsuLate well definea
functions and their objects (cata) in a self-containeo
tnit. A component is a unit of ttought or understanding.

4. A p3rticular DBMS wilt realize their functional components
As software modules. These ccmponents may te either
integrated irtc one component or reLatec through mapping or
trarsformaticns (c.f., database transformation processors
in the ANSI architecture). In a framework, the potentiaL
r3ther than actual relationships should oe defineo, thereby
oltowing design variations for efficiency.

. The functions of importance in ccrsidering a DEMS framework
3re those that are usec by humans and pieces of software

4rom the hi;hest Level appLicaticn user down to the lowest

Level machine interface through a number of functional

components or abstract machir-,s.
6. The Language provides the syntax used to express ano

initiate the functions on the ctjects. Abstract syntax

r"cCarthy 1062] should be used to avoi4 unnecessary
syntactic detail.

A 0P_' ±rchitrJ is defined as:

The details of the implementation cr realization of the

f.nctionaL components cf a particular DBMS incLuding

tle aggreiation or grouping of the functional

ccmponents irto system componerts as well as the

relationships between these components.

4

This definition assumes that:
1. t fr3mework characterizes or specif ies the furctional

compoonents to be realized in a particular architecture.
There may te many architectLres that fulfill the
soeci 4 icatiors of a given framewcrk.

2. The framework may be considereo as a specification of the

rhilosophy ard goals for a DBMS, while the architecture
represents the desigr of system components to satisfy
impLementaticn objectives (e.g., run tie efficiency, rapic
resconse, fast recoverability, and protection against
security vicLation). Naturally, cifferent architectures

rrovice different Likelihoods of achieving tne furctionally

;.efined goals of the framework.

1.Z. the Need to Separate Framework arc Architecture

A DEnS framework can be usec to deternine whether a software
cackage is or is rot a DBMS (i.e., it cefires a class ct objects
called 6"$Ss). The framework says what is recuirec for a DMS d

architecture shows how this is implemented.

As already discussed, the concepts, terms, and implementation
features of DU11Ss are stilt evolving. They prooatly wilt evolve
for some substantial time. However, there has already been a
call for standardization of data manipulation languages and data
oefinitior facilities (this in the USA is urder ANSI X3J4 CCOCL,
X3J3 FORTRAN, anc X3H2 Data Definiticr Language Commitees). It
is wcrth asking nou, how these efforts way affect the future --

anc inaeed whether some aspects cl the stanoards concern

architecture (which presumably would be wrong since it s pecifies
how ri- ther than framework (which is aLlowabLe since it specifies
what). It is necessary to characterize 05PSs in an abstract yet
unict.e way. 9y analogy, the early development of programming
Lanoca,-es needec the concept of a language translator (as its
framewcrk) to provide a metho, for describing the implementation

of particular comoilers.

The re -sons for a C01AS framework are thLs:

1 To aid in uncerstanding DBMSs, frcm a standpoint of their

'-efinitional and conceptual goals.

2. To make it posibLe to define arc specify the neeos as the
'irst phase cf the design process.

_. To allow the analysis of existin DBMSs at a hiqh Level ot
functionality rather than at the "performance" level.

4. To provide a means for futher research in topics such as
cata dictionary (meta data), mappinas between different

cbjects (translation of data and meta oata), semantic

'.atabase modetling anC distrubutec DB6SS.
5. To cermit the abstract comparisor of DBF*Ss, incependent 01

architectural details.

The wain reason for a DnMS architecture definition is:

1. To crovide a uniform metnoo for characterizing a Particular
implementea tS s.

However, when taken together, the framework and architecture
at Sc:

2. A(low stidy, analysis, and comparison of different De'Ss

*ith and without architectural details.
lhence a DqMS framework can be used to ccoroinate the develc.ment

of cifferent DS"S architectures within e family of OEMS stancaras

(e.g., to achieve the needs of [Jeffery et at. 1979)).

It wilt be possible to see whether new De8ss fit within an
existing architecture, cr need a new dsfinition of the
architecture to allow the system to "fit" (e.c., as oiscussec in
[Ber; 191a]). It will also te possible to investigate how a set
of rather different implementations ci DeMSs are similar or
oiffer (e.g., an attempt is now sroer way by the author ano
others to compare cifferent "relational" systems in order to
cetermine a nucleus of functions arc objects for a relatiorai

It is interesting to note that the methcos of this ,)acer apply
elsewhare. The ewphasis here is on OE S, tut the method applies
to all automated information systems (and possibly wicer).
However, the following is the aim of the framework in DEAS teres:

Tc reflect anc capture both current state-of-the-art
ard research ideas concerning CBpSs, as well as to
stoport the evolution of DBMS corcepts and new OPPS
methods.

This ain is analogcus to the one in which programming language
techrotogy has beer captured and supported through the conceptual
lan;4age transtatcrs. As an apparent tantoLogy at present , but
exparded in the latter part of this paper, we oe 4 ine:

A DBVS is a ccmputer based system that implements or
sppocrts ditabase management furctions delineo in the
ODS framework by means of a coherent DPMS
architecture.

I.". relevant Research

The ccncepts underlying the terms CBs framework and DEvS
architecture nave figured largely in LE'4S research. The idea of
surveying and analyzing DBMS foatures oricinated earlier, but
came to truition in the CCDASYL systems committee work rCCDASYL
1Q6s, 19,1'. This work was an attempt at learning the
similarities and differences betweer DBVSS. Not the leist
rctlem in doing this was a definition ct the term DOP'! itself.

6

This work Oistinguished a two letel "architecture": data
structures and storage structures.

In 117, the ANSI group started its work at the beginning cf a
cecace of rapid development in the database area. The ANSI three

schema architecture, which was very influential in the perioo,
was used as a basis fcr: a "new generation" of DEPSs rNijssen
1076, 1977), multiple view support [K[ug anc Tsichritzis 1978],
intergrating programming and datatase Languages in the
cevelocment of user interfaces [Date 1976), ana the development
of cistributed DBMSs [Keil and Holler 19781. 1hecries ana
methcds of mapping between conceptual, externalt an! internal
Levels were developed [Oaolini 1977,1QEC; Ktuo 19783.

Since 1974 there have been few contributions to framework and
architecture issues ser se. However, it is no. evident, as
cescrited in the next section, that tte ANSI architecture is
inadeqtate to accommodate c6rrent DBMS concepts ano future neecs.
Hammer ari McLeoc have cuestioned the two decade cid DE"S
p raci.:m and arguec the neec for a new architecture based on a
federation of Loosely coupLec databases [Harmer ano PcLeod 1q79]
The N. tionaL bureau of Standards has Froposed criteria for a ne.
architecture [Jeffery et. al. 1979; Eerg 1978) not met by the
ANSI architecture. In this paper the concept of DBrS framework

is ceveLoped to adcress the above issues.

7J

2. Recuirements of a DBMS Framework

There is ro doubt that the ANSI/SPARC report contributec to DENS
architecture and theory. The report, hcwever, raises some issues
that it does not address, and ignores others that it shouLa.
This section gives some concepts that a framework shouLc incluce,
but that were missing or deliberately Left cut of the report.

2.1. Contributions of the ANSI/SPARC Architecture

The ANSI/SPARC stucy group on DBMS presented a comprehensive vie.
of a D_:mS from the highest (user) to tte Lowest (device) Level.
It izentified several important hLian "rotes"; rrccessin
functions; interfaces (human, software and hardware); the ftcw of
cata, coimands, crogram modules, arc descriptions between
rrccesses and people; mechanisms fcr program preoceration ana
execttion; and finally the concept of a protctype data
cictiorary. The significant conclusions were that:

1. The particular database model was not important in the

.rchitecture.

2. There were three important teets of data definition
(sche'a): externat conceptualt and internal. Moreover,
that their use improvec oata independence.

. The Levels and their associated rrocessing functions couto
te associatec with proper playing the roles of application,
enterprise and database adminstrators respectively.

4, There must be mappings or transformations betweer these
multiple data definitions (scheca) and thus in processing
the objects zs they pass to and from the database.

2.2. Problems of the ANSI/SPARC Approach

In the tight of more recent work, it is possible to devetooe an
apprcach that better fulfills the criginal (and sooe new)
objectives for characterizing a DBMS. The following ten (10)
issues were raised but not resolved by the ANSI architecture.
1. Itis _z.ruEturat !gR2raEh

The greut attemped to fulfill their framework objectives by
defirirg a prototy;icat architecture. As an architecture. it rot
only told whal a DB-S did, it also indicated h g sch a DE"S
woulc te implementedo Their approach bas str~lra in that it
emphized system structure over systee function. The resuttini
architecture is not sufficiently abstract to be a framework. it
is overty comoteN (as indicated by the fact t~at only the central
thirc is discussed) and does not accommodate all usablt
implementations (e.g., a database machire or associative memcry).

.8

This teaos to the first reqzuirement for a gcod Dom~S frhwrework:

Pe',uirement PNcj I:

A 0i811S framewcrk should accommodate a spectrum of DPMS
architectures. It must not be dependent on haroware or
scftware technology, to achieve longevity in terms of
rzoid technolcgicat advances. It must, however, be
atte to acccmmodate other levels of detail that are
associlted with some abstract or ccncrete machine.

'* trY! !Q12122Sb 12 Database Det1criptian

in~ keecing with the traiiticnal struct~raL approach, the ANS
architecture emphiasizes structure over function with regard to
oatatase definitior. Schemes are described as ccnsisting 01
j.ecri~tiofls of database structure plL! security constraints anc
ofaoministrative fiats". The data dictionary/directory consists
of similar structural and ccntroL inforffaticn.

Recert research on semantic catabaSe mccels [Frodie 197?; EiLLer
anc NeuhcLd 1978; Hammer and MCCLecc 197' catabase mocelling
[2rccieig?9; Wasserman 1950; Weber 197E-, DEMS impLementdtion at'o
catabase maoping EKluglQ7P; Paolini 1q77, 1980) indicates the
need for more than simply structural information in the schema.
A schema shouto describe the complete semantics of a view of the
catatase. Hence, it shoulo include the oasic functions as well
as tte basic Structures of database objects.

The content, nature, functionality, anc relationships of schemas,
schema Orccessors, ,s chema t ransforms , ird cata dictionary of th e

NS I --r chitecture are I iao le to alt er in t ime . Also the various
human 'rcles" wiLl change. This leads to a need tor chance in
the system structure, hence requiring a new architect~re. 7hus

w iave:

A DBvS framewcrk should accommodate (semantic) schemas
that describe function and structure.

Oik 21It~s9 tzl

The architecture characterizes various roles, human interfaces,
anc; Processing functions initiated through the interfaces. it
uoes nct make clear what objects are refered to by each function
hence the roles &no the interfaces are not easily unaerstoco.
For example, an applications prograweer de alts w it h Ceterfna
database objects while an application systems adminstrator deals
with cbjects that constitute an internal schema. 7he

architecture alsO includes relationsthips between processors.
These zetaits should be of no direct ccrcern to people in roles.
The otjective of data independence ircicates that people shoula
be ccncerned with bhat functions and otjects are available. Thus
me have:

The DRMS framework must include the definition of which
functions refer to (use or generate) which objects by
means of which language elements. In the functional
acorcach, objects are included explicitly.

4. Imlieo Fixed Number of Levels

The ANSI architecture distinguishes at least three schema levels:
extern3t conceptual, and internal. The reports argue that the
cistinction was maCe to facilitate data independerce. The
repcrts also indicate multiple Levels of external schemas,
however, it is not clear how multiple external schemas (Let alone
multiple levels) are accommodated.

Just as there are Logical consideraticns for having multiple
levels of external schemas, there are physical or implementation
reascns for having multiple levels of irternat schamas. In both
cases, oistinguishing more Levels or functional components may
contribute to data independence. The srecific number cf Levels
of abstraction is an architectural cesign consideration not an
aspect of a DBMS framework. Thus we have:

The DaBS fr3mework should accomnodate an arbitrary
number of levels of system comocrents. The Levelling
of a particular DB"S is an importart characteristic of
its architecture.

5. Fixed go1sI

The ANSI architecture defines a number cf human roles. A role is
defired by a collection of functions needed to fulfill certain
tasks. Hcwever, the aggregation of functions into specific roles
is rot sufficiently flexible to be a generic characterization.
As irdicated earlier, the roles are still evolving. ;articular
DOMSs agqregate cr group functions differently to support roles
aoprcpriate to the philosophy of the systems; the roles suppcrteo
by CCDASYL like systems (e.a.v UNIVAC's DMS 110C) are similar to
thcse in the architecture, whereas, S STE"-R supports different
roles which are more in keeping with Ccod's principte of
homo;eeeity or uniformity. Also, there is considerable researcn
aimec at automating some of the prooosec human roles. This need
for a variation in roles orcouces:

10

A DSIS framewcrk should te based cn functions rather
t ,an on their aggregation into roles. the framework
S•ouLd not bias the initiation of the functions towards
humans or pieces of software.

The i-Dortance of mappings between objects was emphasized,
however# Little cetail was given. The interim report discussei
static (i.e., structural) taps or transforms between object
"descriptors" in schemas. Research instigated by the
architecture indicated the neeo for dyramic (i.e., procedural) as
well as static maps. Maps may exist between Languages, functions
(i.e., prcgrams) arJ database objects. Maps can be usec in
establishing equivetence, subsets, W'ses" [Parnas 19723 ano
oescrictive relationships between objects. Such a spectrum of
mars is not reftectea in the ANSI architecture. thus:

!eaui-irement G 6.;

A DeVS framewcrk should accommodate a spectrum of maps
by indicating potential reLaticrships and ignoring
details of how a map is realized.

The architecture ccntained over fourty interfaces between roles
ano processing facilities. Textual cescriptions of interfaces
,escriteo the objects and operations, tut there was little detail
on the nature of the Language (i.e., the forms of its syntax, the
%sage tade, or the way in which specific functions coulc be
initiated). This leads to:

ejjiirement N-S Z;

A D9BS framebork should accommccate a spectrum of
languages or interfaces. A lan;uage is characterized
by some abstract syntax and is Lsed tc express and
iritiate functions over DO"S objects.

1he ccncept of a database dictionary/airectory (tDID) as
presented in the architecture is some% at naive. The concect o1
a DO/ has Long ceen known to have mcre potential than as J
repository for scheuas ano their relationships. In fact, the
idea of a directory for distributed systems, eta multiplicity of
aatatase vodets, etc. have all been seen as Cart dna parcel at
the meta database -- which may or may not by implemented within

!1

the sane Da"S (though there are obvious advantages for coing so).
These vore recent ideas were excluded, Siving rise tc:

A DBS framework should accommocate a much higher

philosophy cf meta objects and their control,
functionality and relationships. 1he meta objects have
a distinct relationship to the objects they describe,

and the concept of higher semantics of data shoulc be

easy to incorporate.

9- Urres2lveg J2onSept1aM1 AEn _ J1J.r!A]slye

The architecture raised a number cf problems concernin

conceptual and external schemas:
1. .hat is a conceptual schema structure ?

2. Is there a conceptual database, and if so, are there

conceptual fLnctions '

7. *re external schemas always mapped through the conceptual

schema '

4. Are external schemas subsets cr derivations of the

conceptual schema ?
The architecture dces not prcvide an arswer for these ouestiors:

researchers have examined many cf the alternatives. In

particular, there are good reasons tc support multiple (tut

eouivelent) conceptual schemas as opposed to a single conceptual
schema in the ANSI architecture. This Leads to:

A DB"S framework should accommccate a spectrum of

conceptual anc external Levels.

The architecture did nOt attempt to address the problem of

cistrituteo systems. It contains single conceptual ana internal

schemas. However, for performance reasons, such as those that

arise in listrubuted systems, partitions, replications or partial

transfcrmations of the internal schema might be distributed witn

the cata, Leading to:

A DBMS framework should acconmooate distributed

ditabases through permitting Nultipte schemas and

ditabases at the internal, concertuat, and external

l evels.

12S L

3. Th- Functional Framework

3.1. The Func tion at Agpproach

A computer ba Sed system can be described i n te r ms o f the
functions it oerforms and the objects over which the functions
operate. Frequently a dichotomy arises; the traditional approachi
to Cat 3base management has euphasizec structural description's
(e.q., schemas) whereas the approach tc procramming languages has
emphasized behavicurat descriptions (e.g., data abstraction).
but ty considering a primative Turning bachine, it is apparent
that reither states nor the state trinsitions alone provice an
adeCuate characterization. Indeed the benefits of struCturaL
versLus behavioural representations of krowLedge have been Oetatei
extet'siveLy in artificial intettegence without resolution.

In the approach taken here both functicrs (behaviour) arc objects
(strkucture) are irtegrated in one framebwork. Functions ana
objects are closely related, and functions are retatec to cther
functicns through cbjects, whiLe objects are reLatec to each
o t her v ia functicns. Ob je c ts can te reaLizec only throtgh
functicns and functions have no meanin. with out objects. In the
algetraic specification technique CCGuttao 1975) functionaL
comrpcsition is applied to objects (cr states S) to produce ne6
objects (i.e., tOCS), f1(fO(S)), .. o, fr(... 10(S) so*))* The
jorrcach taken h er e oermits both sices of the function versus
object dichotomy but balances one with the other.

The furctional framwork is thus a paracigm or model of a DEV'S in
t e r s of i ts furctional components and t he ir potential
reLaticnships. h e functional, aspect is d er iv ed from d a t
abstracticn in whi c h ob je c ts are cef ined ccuiptetely ano
abstractly by the functions avaiLatte on them. The component
aspect is derived from the rocutar apprcach to t he corstruction
of software systems. A functional component is cefined by
Lancua::e functions, and objects. The fur'cticnal compcnent Y

representea as in Figure?2.

x

o x

F tFE 2: FUTvrWL COI'WNET SO*3%TIC

The fu-ctions Fx are the operations to be Dorformeo by the
comccnent. The objects Cx are those deiined by (i.e., realizable
thrct.gh) the functions. Fx and Ox corstitute the "se!kn._il" or
meaninc of componert "X". The Language Lx is the means through
which the functions are initiated and tte objects are refererced.
Lx corstitutes the syntax ot the functionaL component "X". In
Figure 2, the Line Lx ---- x can be reac as "initiates". The Line
Fx.----Cx means "uses" or references.

A functional component defines .hat functions are to be perfcrmeo
on what cojects. Details of how fLnctions or objects are
realized are excluded frcm a singLe component but may be

expressed through the potential retaticrships among components.
ExavpLes are showm in Figure 3.

ia ,NP tRi:vATnN

ML ESERVATION LAWAGE

SoeA WINITION, RESERVATON FUNCTIONSET.UN CTIONS

So, w JEMs SEATS, =LIGTS, FARES,
SCHi.ES. ETC.

FiaURE 3: FuN'croNA. ComPww ExwrLs

In crder to answer the question: What functional. Components
constitute the DBMS framework, it is necessary to:

1. Consider aLt objects of interest to the De"S.
Z. Consider what basic or funcamentat functions can te apctieo

to any of these objects.
. evelope the framework by considering each basic function

over each object. This produces i matrix of objects versus

functions ir %hich each entry recresents a functional
component Lx---Fx----Cx.

3.2. rbjects in a DE4S

There are two kinds of objects. First there are otjects
associated directly with the application oata ase (i.e., the

oatatase itself, the database schema, and programs over the
oatatase). Secona, there are objects indirectly associated with
the database, primarily for control reasons (i.P., access

control, system Loss, data dictionary).

First, consider objects associated directly with the acptication
database. There are three types ct level called extIrnji,

SonMS2tua1 , ana internal rescectivety.

3.2.1. External Objects

These consist of all Logical, application specific, objects
(i.e., entities, relationships, functions) of interest to a
particular application or user group (i.e., all objects refereo
to ty functions meaningful to a given application). External
objects are derivec from (i.e., mappable to) conceptual objects.
They constitute "external" databases, and are defined in an
"exterral" schemas.

There Ty oe many external databases anc scheras; both different
external schemas for one conceptual schems and different levels
of extern3l schemas on any given conceptual schema. The purpose
of the external level is to provide problem oriented objects in
the wost convenient manner to a user group and facilitate
mocification an0 creation of applicition oriented cbjects in
agreement with the evolving needs of tte enterprise. External
objects are, of course, realized througf- external functions.

3.2.2. Conceptual Objects

Conceptual objects are those Logical cbjects (e.g., entities,
relaticnships, functions) of interest tc an enterprise, (i.e., to
all current ana potential applicaticns). At a minimum, the
conceptual objects are those from which all current external
Co"jects are deriveo. Conceptual objects have the properties
commcn to all external objects but nct the peculiarities of
particLtar external "views". Conceptual objects are defined in a
conceptual schema and constitute the conceptual database. The
concecual database way never be realized since there may be no
language through which to initiate ccrceptual functions. There
may be many "eouivalent" conceptual schemas over the same
conceptual database. These would aiffer only in the database
mocel used to defire the schema.

The ;ur;ose of the conceptual Level is to support the cefinition
anc ccntrot of objects of interest to an enterprise to achieved
degree of data independence. In particLlar, it provides a casis
for consistency anc semantic untegrity ct external Levels [rooie
197!3 and provides a Level of indirection between internal ano
external Levels.

3.2.3. Internal Objects

internit objects are all those used by the DeMS to implement

15

conceptual and external objects (e.g., records, fires, access
paths9 inlexes, anc utilities). The requirements for internal
objects are estatLished primarily ty the Properties of the
external and conceptual objects anc by the implementation
phiLcscphy. They are cefined in an internal schema ano
constitute an internal database. As with external schemas, there
may be different irternaL schemas for cre conceptual schema. It
is freauently the case that there are several Layers ot
abstraction or internal levets associated with each "internaL
v i ew

The internal Levels are the layers of abstraction usec to
imaplement conceptLal and external databases on some underLying
abstract machine.

3.2.4. External, Conceptual, and InterraL Levels

In cenerat, a DAMS can have multiple external, conceptual, anc
internjl Levels. There may be tuLtipLe, but eQuivalent
coceptual schemas over one conceptual catabase. For both the
external and internal Levels there way be muttiple, different
"viaws", as well as a number of Levels for each "view". FiaLre 4
ilLustrates some of the pDssibilities.

E(c)tI"' E(c)LK

0

E(01 EcN E(c'), * l

1(1VK QW,1W

I(C)LI jjlp i ()

FIGURE 4: POTrAL CONcpIL (C), EMOOL (E), AND INT (I) LEVELING

The architecture of a particular DBMS may include any number of
Levels (incluaing one or two in whic0 case the terms external,
conceptual and internal do not readily apply). Particular levels
may te truly 1n2cStC1VjJ, i.e., objects are never realized (as was
oriiinatly intended for the conceptbat Level of the ANSI
drchitecture). Fcr example, DMS110C conceptual objects, those
cefinel using the schema 0)DL, are rever realized. Database
objects are realizatle only through the DML which refers to
external oojects, those defined using stbschema OL. ir SYSTEM-R

however, conceptual objects are actual. Functions can be applieo
to (tase) tables tc realize them.

3.2.5. System Objects

System ojects are those used by the DoeS to support the dats
mana;e'ent functicns over the external, corceptual, anc internal
objects (e.g., access profiles, data dictionaries, syster Logs,
anc mossages). lypically, system ctjects are defined in the
system 3nd are modified by the system cnty. Future DBVSs may
provide more control over system objects. For example, system

cbjects in SYSTEm-P, such as the table LseO to store information
on relations in the datatase, are predefined but, with the
apcrcpriate authorization, can be modified. Many systems provide
some definitional facility for system objects through system
generation.

3.3. :asic DBMS Otjects

The fr3mework provides for a DBMS with zero or more of each type

c' l e el, (e.q., multiple external, conceptual, anc internal
levels or a single Level). Each Level has three specific kinds
of cbjects associatea with it: data cbjects (aata base), oeject
cescri:tions (schema), and function cescrirtions for program
trarsfcrrations over the database. Ir the case of the external
l-vel, there are external objects, external object descriptions,
ani external function descriptions.

The basic DPMS objects are given in the following table:

17
-.- - -

1. External Objects objects of interest to an
applicat ion

2. Externat object objects which define external
Descriptions objects

3. External Function orograms which define
Cescriptions application functions

4. CorcePtuaL Objects objects of interest to
the enterprise

5. Corceptual Object objects which define
Description conceptual object s

t. CorcectuaL Function Prog rams which cefine
Cescription conceptual database

functions

7. Internal Objects objects usec to implement

conceptual and external

objects

6. Internal Object objects which define
Cescription external otjects

1. Internal Function Programs which aefine
Cescription internal functions

1. Access Profiles objects used to control

access. These objects

describe the conditions

under which users
(huxan or Programs) can
use functicnaL comcorents
(i.e., what Language

eLenents, functions, and

objects are accessable.

11. Data Dictionary objects used to describe

objects in the DEP'S

1 . System Logs objects used by the system to
monitor and maintain

DBMS objects and functions

1". Messages objects passed Letween

functional componerts

it is impcrtant to recall that a DBMS framework is a generic

chdracterization cf DSMSs. A particLar DBMS may have only a
subset of the above objects or may have more. The objects
presented above are viewed as basic to a DBMS.

It is rossi! Le to have objects which describe syster control
obje cts 10 thru 13, however we assLme that these are virtual
(e.ec, no functions are available to define them). These objects
coulc be added in order to describe a DEMS that provices such
functicnal components.

3.4.. ?.asic Functicns

we take a uniform approach to DBMS functions in which we appLy a
set o f basic functions to all objects in the DFMS. Fcr example
the approach accomodates modification functions over database
objects, Object and program descripticr, and even database moode
objects (i.e, the constituent objects of a database mooeL).
Current DB"Ss support the modificaticr of database objects. (In
seLf-orgaizing systems such modificaticns leaO to mocification
cf schema objects). Some systems, e.g., SYSTEm-R, support the
mocificatiun of schema objects. Schema modifications Leac to
moCification of catabase objects but cc not (to our knowledge)
lead tc modificaticns of database mccet objects. A research
system [Hardgrave and Sibley 19791 stpports the mooificaticn oi
database sode[objects (i.e., one can cefine and redefine the
uatatase model). Database mcceL modifications cause modifications
to toth schema and database objects. Olthough the nature of the
basic functions is the same, their effects and sice effects on
the varicus objects of the ODMS vary sLtstantialLy. That is, the
semartics of the functions depeno on the nature of the cobjects to
which tey are applied.

The ten basic functicns are:

1. Create -- initiate or establish an object
Z.. Crc0 -- eltiminate or destroy and object
3. Associate enter an object irto some

relationship with other objects

e.g., connect one object to another.
4. Dissociate -- remove an object irom some

relationship with other objects,
e.g., disconnect cne object trc," another.

5. Lp:;ate -- modify the contents of an object
t. Derive -- deduce and create an object frcm

other objects, e.g., copy is tPe
simplest such furctior.

7. guory read and present cbjects based on
LogicaL criteria, e.g., search anc
di S L ay

E. CoRposite -- a high level operation defined by
Furction structured sequence of tasic

functions 1 to 7.
. Reort -- generate a report concerning namec

objects, e.g., durp.
1 , Aory -- aoply some criteria to named objects

Criterion t.., verificaticr, vaLication,

stastical analysis, applying

intergrity constraint.

3.5. Langwages

A largtage in a furctionaL component has two purposes. First,

the Language is usec to express functicns over objects. Second,

the larguage is used to initiate or prccuce the effect of the

exp:ressed functiors.- For a given fLnction over given objects

there must be scme syntax for their expression. Whereas

functicns and objects can be described abstract(y, language

aspectst ioe., syntax is more concrete. Now the targuage is

impLemented, e°q. binding time, compilation versus

interpretation, are architectural issues not aodressec in the

fraeewcrk. The framework does not imply particular language

featLres # rather it accommodates a spectrum of languages, e.g.,

host, self- containea, parametric. The framework emphasizes the

imrcrt ance of the interface the Language provides an(the need to

oescrite the interface for a particular DBMS.

3.o. Functional Ccmponent Matrix

Each ertry in the fol Lowing matrix (Figure 5) incicates a

potential functional component defined by language, functions,

anc cbjects. A particular D8mS may realize a basic function

through one of more language statements.

Compos- Apply

Create Drop Asso- D4 sso- Update Derive Ouerv ite Report
'

JaCTS caate clare __

External objects

xternal object description

Exterpal function description

ConceptualI objects

Conceptual object descriptions

Conceptual function descriptions

Internal objects

Internal object descriptions

Internal function descriptions

Access Profiles

Data Dictionary Objects

System Objects

Messages

Figure.S: Functional Component Matrix

2

--. wa ;i;. . _ ' _ .. . ".+ . . - . : ' : . ,. , , . _

Agair, we emphasize that the external, internal, and conceptual

levels can be repeated zero or mcre times as needeo. Also,

objects can be added to or taken out of the framework. 1he

functicnaL components described above are considered tasic ir a

DQPS; hcwever, the framework provices for the adcition of

functicnal components which may be user-defined.

3.7. letationshics Between Functional (omponents

The relationships amongst functional ccmponents is an impcrtant

characteristic of any computer-basec system. The specific

relaticnships for DBMS have been eaphasized y researchers

workin: on DZ3MS architecture in Seneral and by the ANSI

architecture in particular. Hence, the relationships must be

acccmmc-iated in the D64S framework.

EecaLse cf the aostract nature of the framework, a spectrum ot

relaticnshics is needed. Consider tto functional components A

and -. They may be related through one or more of the maps or

trarsicrms (inoicated by ===) in Figure 6.

FY

FIGURE 6: POTENTIAL RELATIONSHIPS BETWEEN FUNCTIONAL COMPONENTS

The wacs Tay be used to establish equivElence, derivaticn, sLbset

or "us-s" re!-ationships which may be tc ical or impLewentational.

Another important type of relationship is that the two components

-pay te grouped to form one ccmponent. The language Lx may mac tu

Ly or :-irectly initiate Fy. The functicns Fx may map to Fy or

oirectty ocerate or (y. Finally, the object Ox can be maopeu

directly to Oy. These potential relationships aCply to all

functicnal components# e.g., those fcr database objects, ocject

cescriptions, function descriptions, anc system control objects.

All potential relationships will be incicated in the framework by

the couble tine in Figure 7 which is mcre atstract than Figure 6.

P{1

! -- ,-*

This diagram is abstract in that it incicates the existenlce cf a

retaticnSipl or mar. but not HCw the mag: is to t~e reatizeo.

LX Ly

Qy

Ix I

4. FurctionaL Analysis of O)8Ss

The ccncepts of DBMS framework anc DBMS architecture are
orthcgcnal. That is, given functional comoonerts car be
imptemented in different architectures and a given architecture
coutc be usea tc implement Oifferent functional components. A
DBMS framework permits the analysis cf actual and potential
DSMSs. A major difference between DeMSs is the way in which
functicnat componerts are aggregated irto system components for
implementation purposes and the ways in which the system
comrcnents are related. The architectLaL issues unnecessarily
complicate DBmS cosparisons and DenS standards development.

The fu, ct ional frarework can be apoD iec to DBMSs inoependent ly of
articLtar architectures. Subsequertly, the correspodin6
functional components can be composed, again independentLy of

their Lndertyino architectures. This aralysis has been done for
UNIVAC's D"S 11"C, CODASYL's 1978 CDL, ANSIIX3/H2"s DDL ano
SYSTEM R rorodie 198C].

The fr3,ework can te used to develop system architecture. System
recoirements can be specified in terms cf functional components.
These re.uirements can te met by different architectures.

Architectural design decisions concern the aggregation ot
functicnal components intco system components and the
relationships amongst system components. Key factors in these

cecisicns are:
Ci) mo.luLarity and Layers of absraction for implementation

anI maintenance reasons, i.e. cata inoependence;
(ii) human factors; and

(iii) the desire to support certain "rules' by
croviding through one Language, the functions necessary
to fulfill the role.

The funct ional framework can be used tc characterize beth the
functicnality and architecture of s)stems. For example, most
programming Language systems can be characterized by Figure .

PL/x DATA TYPE INSTANCES /Y flATA TYPFS ANn PRnrn F ,tiR

L INSTANCE LTYPEI I
F INSTANCE I"YPE

I
0I NSTANCE 0 TYPE

FIGURE 8: PROGRAMMING LANGUAGE FUNCTIONAL COMPONENTS

23

LanluaeS in which types and instarces are difficutt or

impocssible to distinguish (e.g. LISF) may be characterize

cifferent(y, viz.,

LISP

FLI SP

LISP

FIGURE 9: LISP FUNCTIONAL COMPONENT

So far, we have discussed "horizontat" aggregation or cotLapsing

of functional components into System components. There is also
"verticaL" coLLapsing in which functiors ard the objects they

refererce are incistinguishabte. Ir LISP (Figure 9) the

functicns and objects shoulO be ccllapsed since they are

incitirguishabLe except when the LI-!P interpreter is beinto

apptiec. Under interpretaticn, the functions are then the objects

seer as procedures being appled and the objects are the otjects

of the ippLication of the procedure.

The CO-tSYL approach to catabases is characterized by Figure IC.

DATA META DATA (SCHEMA)

DML DDL

FDML FDDL

OD. 0DDL

FIGURE 10: FUNCTIONAL COMPON4ENTS OF CODASYL-LIKE DBMS's

The relational approach to databases differs fundamertaLly with

its CIDASYL apprcach. The difference may be illustrated in the
functicnaLity of SOL and OBE. Following Codo's notion of
homogeneity, the distinction between DDL and DPL is not as
precise as in the CODASYL approach. F%,rthermore, SQL provides a
unifcrt trebtment of data cojcets arc data object descripticns
(schema). That is, the two functional cOmponents in the CCDASYL
oiagrav are coLtapsec into cne as is illustrated in Figkre 11 for
the Languages SOL and QBE supported by SYSTEM R [BLasger 197;.

SQL QB E

LsQ. LOBE

FSQL FQBE

0 SQL OQBE

FIGURE 11: SQL AND OBE FUNCTIONAL COMPONENTS

There is a degree cf vertical coLLaosirG in System R since there
is rot a clear distinction betweer functions and relations.
views are defined (and maintained) as functions but are
considered by users as relations. In this sense, System R is more

similar tc LISP than the CODASYL aporoach.

SOL QBE

R~s

'RDS

FIGURE l2:(PARTIAL) ARCHITECTURE OF SYSTEM R.

In SYSTEMw R, RDS (Relational Data Systew) provides the functions
and otiects realized through SQL anc QBE. In the architecture
schecatic (Figure 12), the functions FsQL and Fobe have been
coLlapsed as weL l as the objects, however the Languages are

ai st inct.

25

5.Furctionat Analysis of the ANSI Arc~itecture

1 n t h is sect ion, t he functional framework i s used to
characterized the ANSI architecture. As was discussec (Section
'-)* the functional approach differs frcx that taken for the ANS1
architacture. Therefore, the following~ conventions are used:

(i) ANSI interfaces correspond to Languages,
(ii) ANSI roles are groupings of furctions implemented

by the prccessors manipulated ty the ANSI processing
funct ion.

The ter',irotogy anc "interface numbers" are taken directly frCOa
thle reocrts [ANSI 1975; Tsichritzis and Kiug 1975). For bctn
trevity and abstraction, thie roles will. te illustrated,
interf.Bces between system ccmponents will not te, considered. The
charcterization Presented here is Purely diagramatic; it tacks
the necessary textual descriptions to cefine the compcnets but
which can be fourd in the reports. 1te ANSI architectre can be

~.h'a..trieoin term of functional components and their
poterti,,,k relatiorships. Figure 13 ill ust rates tnose funct ioral
coiwccn~nts related directly to database ano schema objects.

26

K 6-1

oU CLO

41U 4

IVI3 -e -0 -

.5.5.

*IV 6 6

100

166

0.5 - 5

41. 6 z

F iaiure 14 i Liust rates a ctass of possi tLe architectures.

DATABASE SCHEMA/DATA DICTIONARY

EXTERNAL

LL

F c

Oi

L~ue1: Rltoslsi h NI4cietr

To te consistent with the AN. I architecture, specific rather than
a soectrup of retationships can be shown'. Figure 15 i S a
detaited functicnat component sciematic for the ANS1
architecture.

baiase DaCtabeeEtrrzeApiai Apitions

I Conceptualj Extirnal

Schea Sc hema Schema

41 2 5
Application _______7

Programmer

00/0 Fuictions
Report 8
Spec ifier

16 APPLCATION/ 00/0 ObectsInur
SYSTEM ProgramerInur9

I /z Specifier
Ierna I ___________________ EXTERNAL

Database DATABASE 1
I 7.. -- OperationsUpae0

Personnel Specifier

ParametricJ
User

Figure IS: Functional Schematic of the ANSI Architecture

2 9

t. Conclusion

In this paper, it has been arcued that analysis ano comparison ot

OMSs recessitates an abstract DB"S characterization. To cate,

such analyses anc comparisons, notatly the ANSI architecture,

have Ceen unnecessarily compuLicatec by impLemenat ion cr

architectural details. Architectural indepenoence as well as

nine other requirements for a DBMS framework were discussed.

The cortrioutions cf this paper are a cistinction between DEMS

framewcrk dnd DBS architecture, and a functional DePS tramework.

The framework was developed using a furctional approach in which

a ccrrouter system is specified abstractly in terms of functionaL

compcnents. A fi.nctionaL component consists of one or mcre

functicns over defined objects with some form of abstract syntax

with which to initiate the functions. The functional apvroacn

adcresses both the behavioral and structural aspects of a

computer system% The approach is basec on notions of modularity

ano data abstraction developed in programming Language anQ

software encineerirg research.

The advantages of the functional apprcach apply at both the

aostractv framewcrk Level and the implementation-oriented,

architectural Level. Indeec, the approach was aevelopec to

facilitate the design of computer software in layers of

abstractin from a user-oriented abstract Level down to an

,ncerLying abstract or concrete machine. There are at Least

eight tenefits, c.t. [Horning 1976):

1. Rep-etition -- functional coaronents can be definec

once and used repeateoLy.
Z. Nclutarity -- the concept of a functional component

aids in decom;csing complex systems

into meaningfut units.

3. -tructt.re -- functional comconents aid in the design

and implementation of complex systems.

4. Ccnceptual Units -- the functional approach emphizes

recuirements cr goals (what) rather than

specific implementation (how) which

facilitates urcerstanoing.

5. !pecification -- a functional ccmponent provides an

abstract but precise specification of

the properties of a system.

6. Mairtenance -- functional components aid in isolating

and correcting errors.

7. Extension -- functional components can be used tc

add new components to a system.

k. r'C.endence -- functional components with well

defined retaticnships support

system modification through such

features as secarate compitaticn.

• - .

The functional fraaework was designed tc fulfill the recuirements
set for DBMS frameworks. The framework is based on functions,
objects, and tanguages - the csonstituerts of a functional
comccnents - rather than being based on specific aggregations of
functions into rcles with interfaces to processors that operate
on implied objects. It accommodates a spectrum of architectures
since it is independent of architectural issues. In particular,
it accommodates a spectrum of maps rather than specific
reLaticnshiDs which determine a D9MS architecture. The spectrum
of saps permits a arbitrary number of Levels of external,
conceptual, ana internal schemas, e.g., it accommodates
nistritutea databases. Schemas defininc structure and behaviour
are stupported. The approach Leads to and accommooates the
evotvino concepts of data dictionary/directory. These and cther
Lenefits have been demonstrated. A acre detailed demcnstration
of fwnctional anaysis, including the use of the functional
compcnant matrix, is presented in tBrocie 198C].

The furctionaL framework also satisfies recuirements Proposec for
DB S architectures in [Jeffery et at. 1979]. The functional
framewcrk emphasizes components and is simpler than the ANSI
architecture. It permits concentration on specific functional
comccn,?nts in isolation. The functional component matrix
includes all features proposed for a D60S and provides for
user-oriented components. The levels of abstraction approach
acccumcdate any Levels of "capabiLity".

An irtcresting reOLirement is the need for a DBMS architecture to
accormcdate database concepts ano termirology. It has teen shown
that the functional framework accommodates conventional database
concepts and terms, e.g.t those introduced by the ANSI
architecture. The functional framework also accommocates the
concept of database model.

Only one research system, the database wodel processor Hardgrave
anc Sibley 19791 supports the defintion of new database moceLs.
This concept can be accomwodated in the functional framework by
aiding a functional component for database models. The objects
C4 such a component are the generic descriptions of schema
objects, e.o, the relation ana tupLe ccrcepts in the reLationaL
database model and the record type anc set type concepts in the
C'.ASYL moier. Sove subset of the tasic functions woulo be
oefired over the objects. Figure 1 represents a DPS with a
oatatase model component.

database se ha t

L L L

F F F

database objects sch objects descript Of schema
objects

Figure 16: Functional conets of a Universal DBMS

b L

7. Reeprences

The ANS1/X3fSPARC DBMS Framework, Interim revort of the study
orouc on datacast management systems, February 1975, F21

(culletin of ACm S!GMOD) 7, 2 (1975).

Eters, J.L., A DBMS architecture for prucent managers. lnforma!t±-J2
ard 0.n#g:g! !t 1 (1978) .265-276.

Eilter, H., and E. Neuhctd, Semantics of data bases: The

s-mantics of cata models* 1Ifor_1$oL 2, 3 1 (1978).

Etosjer, '.W. et aL., SYSTEIO-R: An architectural uocate. IBM
Report RJ2581, San Jose, July 1975.

brcrie, m.L-, Soecification and verification of database semantic
irtegrity. Ph.D. diss. CSRG-91 University of Toronto, Parch
1 Z78.

Erocie, V.L•, Data Quality: Data reliability and semantic
integrity. Froc 17€ !NFOTrQH ta--- he------------fere
2: 2 -i !sjiqr, Lonoon, September 1979.

Frccie, '.L•, A functional analysis of database management
Systems. Technical Report, Department of Computer Science,
U-iversity of Maryland, in preperation.

CIOASYL Systems Ccmmittee, .A SErveZX od q12.!A1 zt4 liaa
Lpnaaf.ena Sy.§SZ1, ACP, New York, May 1969.

C')DASYL Systems Committee, Feature anat l ij g sentr jized
41tAISe manacei2' 1z2t!eMs_, ACM, New York, may 1971.

ate, C.J., An architecture for high-level database extensions.
,rE21 -'2Z§ At . washington C*C., June 1976.

(bttac, J.V., The soecification and aplticaticn to programming of
atstract oata types. Ph.D. diss. CRSG-59, University ot
Tcrcnto, September 1975.

Hammer, M.M., and C. 'cLeod, The semantic oata model: a modelling
mechanism for data base appLicaticrs. _roc. 1978 A
Austin, Texds, Way 1978.

sammer, M .M, and D. McLeod, on database management system
architecture. Technical Report, Department of Computer
Science, University of Southern California, m ay 1979.

ihr:irive, W.T. ard E.H& Sibley, Data mocel processing: an
3coroach to standardization of citabase systems. IFSN T.R.
1.5, Univ. of ParyLand, July 1979.

32

morrin-, J.J., Some desirable Properties of data abstraction
fs3CititieS. ME~LIN N~jijjt VOL. 11 1Q76 Special Issue, anu
S 1(----D FD7 8, 2 (1976).

Jeffery, So, Do Fife, D. Deutsch, and C. Sockut, Architectural
ccr'si'erations for federal catabase stancarcso FrCQc

-C!PQI2 Sar Francisco, February 1979.

Keil, C., and E. HoLler, Architectires for Leterogerneous .
distributed database systems. In Poneta J.(Eo.) IC12C~dlion

Ib~!~sz.Ncrtt.-o1.tand 1973.

KLu;, lop and DoTsichritzis, "uttiple i ew suppo rt w it h in th e
A%4SI/SPARC framwork, Pr2~± 31: Ir1:C11!201 12Cference eon
yery Lj!St 222jj Tckyo 197?.

!'.C., Theory of database mois. PhoD. as. CP-8
U-iversity o4 Toronto, December 1v7 3.

0cC~rt?,y, J., Towards a mathematical sc ie n ce of coeput at icn.
P rocS. 1L1Z jS~qSrj j2§?, North-lBcltand Puolishing Company,
ATSterdam, NetherLands 112

&ijsse', G.o'., A cross architecture for the next aereration
dztabase marayefuent systems. In Ni jssen, CG.P.(Ed.),
!c.~!LL±n2 in~ ;2j DA21 !an ag.L t J~j!j North-HoLlano
1 6

ag2SnI: JXf1j North-Holland 1977.

FacLini, P., and G. Petaqatti, Formal. cefinition of mappings in a
database. PrS 12ZZ Icronto, June 197'.

P ac Lin i, !Do, A ust ract data types for database management system
a rc h it ec t ure. Ph oD. d is s. Department of Computer Science,
Uriversity of Californ ia, L.A. 19!C.

Farras, D-L., On t~e criteria to be uset in decomposinz systems
irto modules. C2 !M. !1! 1k, 12, December 1972.

Tsichritzis, Deg ard A.Ktug (Ed.), The ANSI/X3/SPORC D2po
framswork, Report of the study grcup on database management
systerus. AFIFS Press, ?ontuale, N.J., 1977, also in

1ir"!M1i2C !X12 1, 7 1973.

%asserman, A.!., Th~e extension of abstract data types to database
manacement. Uriversity of Catiforria, S.F. Lat. of MeaicaL
Information Science, 198C.

;oeter, 4.9 A softiare engeneerin) view Of database systems.

e:1z il latruii~ali Lg2Ltell 2!! Ytrr Lfr2f 221! 6-a
Berlin, Seoteffber 1975.

3?

